If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-20x^2+3x+196=0
a = -20; b = 3; c = +196;
Δ = b2-4ac
Δ = 32-4·(-20)·196
Δ = 15689
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{15689}}{2*-20}=\frac{-3-\sqrt{15689}}{-40} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{15689}}{2*-20}=\frac{-3+\sqrt{15689}}{-40} $
| 20x^2+3x+196=0 | | 4/a-3=3/a+1 | | (n-8)*5=10 | | 17-3x+3=-2x+6x | | Z=z/4+6 | | X+1/2+x-3/4=1/2 | | X/2+x/5=5 | | 2x3+3x=115 | | 6x=18x+9 | | 2x+5*7x/4=81/4 | | 16÷4=4c | | 0.8m−4=−0.8m | | X=180-(x+90) | | 16^x - 4 = 8^2x | | 5x-8=2(3-x) | | 4y-4.5=3y+0.5 | | 3y=8y+36 | | 3x-14=10+6x | | 3x/7+2x/7=3.4/21 | | 1/8x+5/6x=115/48 | | 5x+1/2x+(1/2x+2)=122 | | 30=5(x+5)# | | 1/2x1/4=x | | 1/2x1/4=4 | | 99=100-4(n) | | 4(5-x)+12=8(x+1) | | 4h+12=77-39h | | 3-4m^2-5m+2=0 | | 13x-25=7x+5 | | -6+5+7a=9-27 | | 3(1-x)-(2(2x-3)/2-5x=30/17 | | x*(x*(x*(x+1)))+x*x+2=4 |